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TIME-TEMPERATURE DEPENDENCE DETERMINATION 

OF THERMOPHYSICAL PROPERTIES OF PLASTICS 

UNDER CONDITIONS OF THERMAL DESTRUCTION 

L. N. Aksenov, O. F. Shlenskii, 
and A. T. Nikitin 

UDC 678:536.6 

I t  is p roposed  that  the t he rmophys i ca l  p r o p e r t i e s  of composi t ion p las t i cs  be de te rmined  under  the condi-  
t ions of t h e r m a l  decomposi t ion  re la ted  by the degree  of the decomposi t ion  p r o c e s s  complet ion which in turn 
can be a s soc ia t ed  with the densi ty of the m a t e r i a l .  On the bas i s  of p r o c e s s i n g  a la rge  number  of t h e r m o g r a v i -  
m e t r i c  expe r imen t s  it was  es tab l i shed  that  the densi ty  of these  m a t e r i a l s  changes over  a compara t ive ly  smal l  
region;  the extent  of the change depends on the ra t io  of the components .  The upper  boundary of this region,  
conditionally named the boundary of the ins tantaneous densi ty  va lues ,  can be de te rmined  f r o m  the exper imen ta l  
r e su l t s  with a heat ing ra te  of 1-10~ using low th ickness  spec imens  of the m a t e r i a l  in which the condition 
of un i form (within a given accuracy)  t e m p e r a t u r e  d is t r ibut ion has  been a s su red .  The lower  boundary is d e t e r -  
mined using the r e s u l t s  of e x p e r i m e n t s  in which the spec imens  are  subjected to long heat ing upon reach ing  the 
equ i l~ r i t un  s ta te ,  and the comple te  a ccom pl i s hmen t  of the d e s t r u c t i o n p r o c e s s  at  each  of the in t e rmed ia te  t e m -  
p e r a t u r e s  occurs .  Analogous boundar ies  occu r  fo r  the reg ion  of changes  in the t h e r m a l -  conductivity coeff icient .  It 
is p roposed  that  the connection between the densi ty  and the the rmal -conduc t iv i ty  coeff icient  be es tab l i shed  using 
the s imp le s t  approx imat ing  functions or  on the bas i s  of the Maxwell equation. 

The de te rmina t ion  of the indicated boundar ies  substant ia l ly  s impl i f ies  the expe r imen ta l  de te rmina t ion  
and the descr ip t ion  of the t he rmophys i ca l  p r o p e r t i e s  of p las t i c s  under  the conditions of t h e r m a l  des t ruc t ion .  
Example s  of expe r imen ta l  data p r o c e s s i n g  by the p roposed  methods  and the kinetic c h a r a c t e r i s t i c s  of some  
v i t r eous  p las t i cs  de te rmined  at  heat ing r a t e s  of ove r  100~ and under  i so the rma l  conditions a r e  p resen ted .  

Dep. 3322-77, July 19, 1977. 
Original  a r t i c l e  submit ted  May 13, 1976. 

E F F E C T  O F  V A R I O U S  F A C T O R S  ON D E S T R U C T I O N  

O F  P O L Y A C R Y L A M I D E  S O L U T I O N  

N .  I .  A k s e n o v  a n d  V.  S. P o d k o r y t o v a  UDC 532.517.4:532.135 

The a r t i c le  r e p o r t s  the r e su l t s  of e x p e r i m e n t s  r ega rd ing  the explanat ion of r ea sons  which br ing about the 
des t ruc t ion  of p o l y m e r s .  Fo r  this end,  s e v e r a l  s e r i e s  of expe r imen t s  were  conducted on de te rmin ing  the 
e f fec t iveness  of po lyac ry l amide  solut ions of va r ious  concentra t ions  in lower ing the hydraul ic  r e s i s t a n c e s  de -  
pending on the durat ion of the i r  m ovem en t  at  constant  and va r i ab le  speeds ,  and other  f ac to r s .  

The e x p e r i m e n t s  we re  conducted in a l abo ra to ry  appa ra tus ,  opera t ing  in a closed loop. The range of 
Reynolds number  changes upon the m ovem en t  of the solutions was f r o m  2 �9 104 to 1.3 �9 l0  s. 

Before  conducting the bas ic  s e r i e s  of e x p e r i m e n t s  on the study of the anomalous  p r o p e r t i e s  of po ly-  
a c ry l amide  solut ions,  expe r imen t s  we re  c a r r i e d  out to es tab l i sh  the durat ion of the appara tus  opera t ion at  
which all of the p a r a m e t e r s  under study would be m e a s u r e d  under  identical  conditions. 

The effect  of concentra t ion on the changes of the hydraul ic  r e s i s t a n c e s  was studied in the f i r s t  s e r i e s  of 
expe r imen t s .  The second s e r i e s  es tab l i shed  the m e c h a n i s m  of the hydraul ic  r e s i s t ance  changes due not only 
to the solution veloci ty  but a lso  to t ime.  

The third s e r i e s  was a repet i t ion  of the f i r s t  with one di f ference:  The concentra t ion was inc reased  by 
adding f r e sh  po lyac ry lamide  por t ions  to the solution which had a l ready  been subjected to the test .  

�9 All-Union Inst i tute  of Scientific and Technica l  Informat ion.  

T rans l a t ed  f r o m  Inzhenerno F iz ichesk i i  Zhurnal ,  Vol. 34, No. 3, pp. 536-554, March,  1978. 
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The e x p e r i m e n t s  showed that  all  of the examined f ac to r s  contr ibute  to a ce r ta in  degree  to po lymer  de-  
s t ruc t ion ,  which i m p a i r s  the abil i ty of  the solution to lower  the r e s i s t a n c e  of the turbulent  f r ic t ion.  

Dep. 3325-77, July 4, 1977. 
Original  a r t i c l e  submit ted  D e c e m b e r  20, 1976. 

LOW-PRESSURE FLOW OF WET STEAM 

IN A LAVAL NOZZLE 

V. G. Zharinov, F. G. Bashirov, 
and 11. A. Rakhlmzyanov 

UDC 533.6.011 

Measurements are reported on a boundary layer in a nozzle, particularly in over-expansion mode; a 
Laval nozzle of axially symmetrical conical form is used with fairly large f. The conicities of the expanding 
parts were 1:3. 

Figure 1 shows the distribution of the total pressure as measured by a total-pressure probe at various 
points for five such nozzles. Condensation steps occur near the throat in the expanding sections; all the mea- 
surements were performed far fromthe throat, i.e., behind the condensation step. These nozzles were en- 
closed in vacuum. No special cooling or heating was employed. 

The thickness of the dynamic boundary layer in each section may be judged from the distribution of P~ 
along the section. The isentropic core has constant P~, whereas Pb varies in the boundary layer. It is clear 
that the boundary layers make up much of the flow in the nozzles. 

The following approximate relationship was obtained for M = 4.2-5: 

5 
_ l 0,2 -- 1.9 Ig Re. 

dc 

The thickness 5 of the boundary layer was the value of the transverse coordinate for each section of the nozzle 
reckoned from the wall such that Pb differed from that in the isentroplc core by 2-3%. The values of Re and M 
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Fig.  1. Dis t r ibut ion of total  p r e s s u r e s  103. P'0/P0 in c r o s s  s e c -  
t ions of nozzles :  a) 1) d c =  9 . 6 m m ,  d e = 130 m m ,  Pb = 5.54. l0  s 
Pa ,  T o = 464~ P m  = 693 Pa; 2) 9.6 and 130, 3.76" 105 , 447, 466; 
b) 1) 5.1 and 80, 5.73.105 , 469, 266; 2) 5.1 and 80, 3.84.105 , 458, 
266; c) 1) 5.1 and 130, 5.6" 105 , 458, 12~, 2) 5.1 and 130, 3.75-105 , 
441, 100; d) l )  7.4 and158t  5.86" 105 , 462, 573, 2) 7.4 and 156, 
3.8.105 , 445, 532; e) 1-3 and 78, 5.67.105; 443, 160; 2-3 and 78, 
3.76.105,  429, 113. Sections of nozzles  denoted by the d i ame te r  
(mm) of the nozzle in pa ren theses .  The absc i s s a  shows 103 �9 P ~  
P0, while the ord ina tes  a re  l ines denoting the cor responding  s e c -  
t ions (the length of a line f r o m  the axis  to the wall  co r responds  to 
half  the value given in pa ren theses ) .  



were  de te rmined  f r o m  the p a r a m e t e r s  of a one-d imens iona l  flow calculated on the bas is  of i sen t rop ic  flow of 
m o i s t  s t e a m  in t h e r m o d y n a m i c  equi l ibr ium;  the c h a r a c t e r i s t i c  d imension occu r r ing  in Re was taken as the 
d i a m e t e r  of the nozzle  sect ion.  The dynamic  v i scos i ty  was taken for  the vapor  phase.  

The dis t r ibut ion of the s ta t ic  p r e s s u r e  along the axis  of the nozzle in ove r - expans ion  mode shows that  
the flow is dece le ra t ed  in diffuse shock waves ;  the s ta t ic  p r e s s u r e  i n c r e a s e s  in a ce r ta in  zone of cons iderable  
width. The reduct ion in the p r e s s u r e  level  causes  the extent  of the i n c r e a s e d - p r e s s u r e  zone to i n c r e a s e ,  since 
the v i scos i ty  then has  m o r e  effect .  The flow is not subsonic  beyond the i n c r e a s e d - p r e s s u r e  zone,  since there  
is  a fal l  in p r e s s u r e  and the flow again a c c e l e r a t e s .  The f i r s t  i n c r e a s e d - p r e s s u r e  zone is followed by a s e c -  
ond one ff n is l a rge .  

f 
de 
dc 
M 
P~ 
P0 and T O 
P m  

Re 

n = P m / P  e 
Pe 

N O T A T I O N  

is  the d i a m e t e r  of  ex i s t  sec t ion  of nozzle;  
is  the d i a m e t e r  of c r i t i ca l  sect ion;  
is the Mach number ;  
is the total  p r e s s u r e  m e a s u r e d  by a t o t a l - p r e s s u r e  probe;  
a r e  the p r e s s u r e  and t e m p e r a t u r e  of the s t e a m  at  the inlet  to the nozzle;  
is the p r e s s u r e  in the med ium flowing f r o m  the nozzle;  
is the th ickness  of the dynamic  boundary l aye r ;  
is the Reynolds number ;  
is the degree  of ove r -expans ion ;  
is the s ta t ic  p r e s s u r e  at en t ry  to the nozzle ,  as de te rmined  f rom the condition for  one -d i -  
mens iona l  i sen t rop ic  flow of the rmodynamica l ly  equi l ibr ium mois t  s team.  

Dep. 3157-77, July 4, 1977. 
Original  a r t i c l e  submit ted  D e c e m b e r  6, 1976. 

A M A S S - T R A N S F E R  P R O B L E M  IN 

W I T H  " M E M O R Y "  

L.  S. K a l a s h n i k o v a a n d  I .  N .  

M A T E R  IA LS 

T a g a n o v  UDC 66.021.3 

In compl ica ted  cases  of a complex  m a s s  t r a n s f e r  accompanied  by the in teract ion of the t r a n s f e r  s t r e a m  
with the s t ruc tu re  of the subs tance ,  the ef fec ts  of the concentra t ion field evolution c h a r a c t e r  change a r e  ob-  
s e rved  dur ing the per iod ic  change of the init ial  and the boundary conditions with t ime.  The l inear  m a s s - t r a n s -  
f e r  equations cannot desc r ibe  such ef fec ts  because  the l a t t e r  c a r r y  the " m e m o r y "  cha rac t e r .  The cycl ic  ad -  
s o r p t i o n - d e s o r p t i o n  p r o c e s s e s ,  po lymer i za t ion  p r o c e s s e s ,  e tc . ,  often display ef fec ts  which may  be desc r ibed  
in t e r m s  of m a s s  t r a n s f e r  with a " m e m o r y . "  

Fo r  m a s s - t r a n s f e r  p r o c e s s e s ,  the re la t ionsh ip  between the s t r e a m  and the concentra t ion gradient  of the 
f o r m  

~D(0) ] dc(r, z--0) n--I 8c(r, T--0) 
i= - a~ Or 

is examined.  

This  re la t ionship  leads to the m a s s - t r a n s f e r  equation of the f o r m  

dO, n~<l. 

Oc ~ ac (r, T--O) 
(o) ~ - - + .  ~' (o) aT 

0 

D(O) n 
f2 

~ r  n--1 c) [r e Oc ] 
--0. 0 ; J +  

- [ - ;  D' (O) n Ic)c(r' T - - O ) n - 1  0 2 fir Or r 2 r T--O)]  dO, n ~  l 
- -  Or ( 2 )  0 
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with boundary conditions 

0c I = 0. (2) c (r)[~= o = 0; c (~)l,=, = 1; -~r ,=0 

The formulated problem (1), (2) was solved for  n = 1 using the operational  method. For  a more  compli-  
cated case when n < 1, a f r agmenta ry  l inear  approximation is used,  which consis ts  of the fact  that the region 
of the gradient  change is broken up into par t ia l  segments ,  and the solution of the nonlinear equation (1) is r e -  
placed by the soh t i on  of l inear  equations in each of the segments .  

N O T A T I O N  

c is the concentrat ion;  
] is the stream of substance; 
r is the coordinate;  
T is the t ime;  
O is the t ime lag; 
D(0) is the relaxation function of the substance s t r eam;  
/3(0} is the energy-concentration-relaxation function. 

Dep. 3204-77, June 28, 1977. 
Original article submitted March 1, 1977. 

D E T E R M I N A T I O N  O F  E L E C T R O N  C O N C E N T R A T I O N  IN 

H I G H L Y  D I S P E R S E D  A E R O S O L S  W I T H  

E L E C T R O N - E M I T T I N G  P A R T I C L E S  

E .  V.  S a m u i l o v  a n d  A .  V.  G o r b a t o v  UDC 537.562 

The concentration of electrons in a highly dispersed aerosol (X >> R) the particles of which emit photo- 
or thermoelectrons has been determined under the condition that the thermal movement energy of the atoms, 
as well as the absolute value of the potential energy of the electron in the electric field of a positively charged 
aerosol particle is much lower than the average kinetic energy of the electrons (), is the average length of the 
free path of an electron upon its dispersion on the atoms; R is the radius of the aerosol particle). In a quasi- 
stationary approximation, the kinetic equation for the case k~R2Np << 1 has the form 

M 1/~ dV f + Vr~R2Np (~o - -  f) = O, 

and its solution when k = const  is the function 
X 

f(V) = (2~/V')S Xa/o (X)exp [--S(2?dy)/y] dX, 
V Y 

where y = (MMrR2Np/2m). Here Np is the concentrat ion of the aerosol  par t ic les ;  V and m are the velocity and 
the mass  of the e lect ron,  respect ively;  f and f0 are  the distr ibution function of the absorbed and the emitted 
e lec t rons ,  respect ively;  and M is the mass  of the atom. 

In the above kinetic equation, in the integral  of collisions of e lect rons  with the atoms presented in the 
differential  f o rm,  the member  containing the gas tempera ture  is omitted; the e l e c t r o n - e l e c t r o n  collisions 
are  completely d i s regarded ;  and the aerosol  par t ic les  are  examined as neutral  molecules  that absorb and 
emit  e lect rons .  If the par t ic les  emit  only the rmoe lec t rons ,  then 

[o = No (m/2akTp) 3/2 exp [-- mV2/2kTp], 

No ~ 2 (2.1mkTp/h~) 3/2 exp [ - -  W/kTp],  

where N O is the e lectron concentrat ion in an i so thermal  aerosol  when the gas tempera ture  is equal to the t em-  
pera ture  of the par t i c les ,  Tp; h and k are  the Planck and Boltzmann constants ,  respect ively;  W is the work ex-  
pended upon discharging the aerosol  par t ic le  mater ia l .  
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Substituting the above express ion  for  f0(V) into the formula  for  f(V) and ca r ry ing  out the appropria te  
calculat ions,  express ions  for  concentrat ion N e and for the average kinetic energy of the aerosol  e lect rons  
]~ can be obtained: 

Ne = NoT/(~ -- 0,5), ~ = 1.5 kT~ (~ -- 0 5)/(~ + 05). 

As an example,  let us examine an actual aerosol  with p a r a m e t e r s  Np = 1013 m -3, R = 10 -6 m, Tp = 1850~ 
2m/M = 5.5" 10 -4, k = 2.41 �9 10 -~ m,  for  aluminum oxide par t ic les  W = 7 .5 .10  -19 5. Then 7 = 1.375, N O = 
6.08" 1013 m -3, N e = 9 55.1013 m -3. 

Dep. 3320-77, July 11, 1977. 
Original ar t ic le  submitted December  10, 1976. 

E F F E C T  O F  C H A N N E L  S U R F A C E  C O N F I G U R A T I O N  ON 

F L O W  C H A R A C T E R I S T I C S  A T  L O W  

R E Y N O L D S  N U M B E R S  

A.  A.  V o l k o v  UDC 532.526.3 

The solution to the problem of the viscous fluid moving in a flat undulating channel was examined. The 
equation for  the sur face  of the walls is given in the fo rm of per iodic  functions. Assuming  that the relat ive 
amplitude of a wave is less  than unity, we seek the solution of the movement  equation in the flow functions by 
the method of expansion into Taylor  s e r i e s ,  l imit ing ourse lves  to the examination of l inear approximations.  
In the zero  approximation,  the solution coinciding with the known solution was obtained. In the f i r s t  approxi-  
mation,  taking into account only the m em ber s  containing the relat ive amplitude to the f i r s t  power,  the problem 
is reduced to the solution of the sys tem of equations 

d~lOz 4 -l- 204r ~ q- d'*ClOy 4 = O. 

= 0; th~/Oy -t- 3 /2  Q s in  (kx -[- (p) = 0 at  y = - -  1, ( 1 }  

=0; o ~ / O y = O  at y = l .  

The exact  solution of the sys tem of equations (1) was determined,  and the simplified calculation depen- 
dences were  presented,  in par t icu lar  for  the flow function, in the fo rm 

"r l ) = 3/2Q (1 --}- y) exp [-- k ( 1 q- y) ] sin (kx q- (p). (2) 

The quantitative and the qualitative analyses  of the resul ts  allow to make the conclusion about the fact  
that the dis turbances  due to undulation are  localized at the corresponding wall,  with the thickness of the d i s -  
turbed area on the o rder  of one wavelength,  while the amplitude affects mere ly  the intensity of the disturbance.  

Dep. 3321-77, July 11, 1977. 
Original ar t ic le  submitted March 28, 1977. 

R A D I A N T  H E A T  T R A N S F E R  IN A S Y S T E M  O F  

C O N C E N T R I C  S P H E R E S  

L .  I .  V a l '  UDC 536.3 

In the ar t ic le  the problem of the radiant  heat  t r ans fe r  is solved by the zonal method. The nonisothermal  
gas volume is divided in this case into p i so thermal  volume zones (spherical  rings). For  the determination of 
the d i rec t  mutual t r ans fe r  sur faces  between zones the following dependences are  proposed:  
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a) b e t w e e n  v o l u m e  z o n e s  (i > j ;  i = 2 ,  . . . ,  p;  j = 1, 2 ,  . . . .  p - 1): 

m 

f ~ f j  = F i  (A~. 1 - -  A~.I+~) - - F ~ + t  (A~+~ . i -  A ~ + ~ . l + t )  - - ( F ,  - - F , , )  X 

• (Af.~ - A, :~+,)  + ( ~ + ,  - -  ~,,) (A?+:.~ - -  A, '+ , . /+ . ) .  (1) 

w h e r e  j and  j + 1, i and i + 1 a r e  the  s p h e r i c a l  s u r f a c e s  l i m i t i n g  the  v o l u m e s  gj and g i ,  r e s p e c t i v e l y ,  w h e r e b y  
the  a r e a  of  the  s p h e r e  F i < F j ,  F i > F i + l ,  F j  > Fj  + l ;  k and  m a r e  the  i n t e r n a l  and the  e x t e r n a l  s p h e r e s ;  

b) be tween  the s u r f a c e  zone j and  the  v o l u m e  zone i :  

c) v o l u m e  gi w i th  i t s e l f :  

g~s---j = F I + I A ~ +  , .I - -  F~A~.I + (Fe - -  F , )  A~. i - -  

- -  (F~+, - -  F, , )  A'~+~. I (~ > i ;  F~ < F j ) ,  p )  

(3 )  

~ 7 = 4 v ~ K , - e ~ - e ~ , , -  ~ - ~  ( i -1"0.  (4 )  
! 

w h e r e  V i i s  the  v o l u m e  of the  s p h e r i c a l  r i n g  gi.  

In  g ig j ,  g ig i ,  g i s j  c o m p o n e n t s  can  be i s o l a t e d  wh ich  t ake  in to  a c c o u n t  tha t  p a r t  of r a d i a t i o n  of the  v o l u m e  
zone gi which  p a s s e s  t h r o u g h  the  i n t e r n a l  v o l u m e - l i m i t i n g  s u r f a c e ,  i s  w e a k e n e d  by p a s s i n g  th rough  the o t h e r  
v o l u m e  zones  and i s  only  then  a b s o r b e d  by the v o l u m e  zone g j ,  the  r a d i a t i n g  v o l u m e  zone gi i t s e l f ,  and the 
e x t e r i o r  ( enve lop ing  the s p h e r i c a l  r i n g  gi) s u r f a c e  zone s j ,  r e s p e c t i v e l y :  

g-~'l = (r,+~ - ~,,) (A,'+,. i  - -  AT+~.~+ , )  - -  (~ '  - -  F,,)  (A,"t - -  A,:~+,) + 

+ ( ~  - r , + , )  (A~.~' - ",z+,,"~+'' (5) 

h ~ ,  = ( r ,+ ,  - ~ . )  ( ~ A S , ,  - A,'+, ~+,)  - (p, - p . )  A,', + ( r ,  - r ,+ , )  ~ ' .  (6) 

gl-~i = (F~ - -  F..) A~. i - -  (F,+,  - -  15,) A,~+, ,I - -  (F~ - -  F,+~) A ~ ' ;  (7) 

d) be tween  s u r f a c e  zones  

s-~-.~ = (Fl - -  F,.) (I - -  A~.i) (i >1i; R I < R j ;  i =  l, 2 . . . .  

. . . .  p; i = l, 2 . . . . .  p), 

sis"-j=Fl(I--Ai.i) ( l > j ;  R i < R j ;  i = 2  . . . . .  p + h  1=1 .  2, . . . ,  p). 

( 8 )  

( 9 )  

The  a b s o r p t i o n  c a p a b i l i t i e s  of the m e d i u m  a t  a c o n s t a n t  a b s o r p t i o n  c o e f f i c i e n t  K a fo r  b l a c k  r a d i a t i o n  a r e  d e t e r -  

m i n e d  f r o m  the fo l lowing  d e p e n d e n c e s :  

a) be tween  the  i n t e r n a l  s u r f a c e s  of the  s p h e r e s  in the  p r e s e n c e  of an i n t e r n a l  c o n c e n t r i c  s p h e r e  not  c o n -  

duc t ing  r a d i a t i o n  (ira j ;  R i -< Rj ;  i = 1, 2 . . . .  , p;  j = 1, 2 . . . .  , p):  

A~.i = I - -  ~ - -  [ exp - -KaR j  ] / I  - -  (RI/RJ)" t -F ]/'-~'--t dt = 
Ri  - -  R,,  (R,,TR~)J 

I R~ (RJ?iJ)" = -- ~ exp [-- KaRJ (Y'(Ri/RJ) 2 -  t -~- V 1 - t)] d[; (10) 
R~--R~ (R,j I)' 

b) be tween  the  i n t e r n a l  s u r f a c e  of the e x t e r n a l  s p h e r e  and the  e x t e r n a l  s u r f a c e  of  t he  i n t e r n a l  s p h e r e  i 

( i ~ j ; i  = 1 , 2 , . . . , p + I ; j = I , 2 , . . . , P + I ; R  i - < R j ) :  

Ai.i= l --  ~ ! exp [--KaRl (V~--- t - -} / (RdRi) ' - - t ) ]  dt  (11) 

By a p p r o p r i a t e  s u b s t i t u t i o n  of the i n d i o o s ,  a l l  sough t  f o r  a b s o r p t i o n  c a p a b i l i t i e s  can  be d e t e r m i n e d  f r o m  Eqs .  

( 1 0 ) - ( 1 1 ) .  

Dep. 3160-77 ,  J u l y ,  1977. 
O r i g i n a l  a r t i c l e  s u b m i t t e d  M a r c h  28,  1977. 
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O P T I M A L  U S E  OF  T H E  P S Y C H O M E T R I C  

D I F F E R E N C E  IN R E F R I G E R A T I O N  

T E M P E R A T U R E  

A. B. T s i m e r m a n  UDC 621.568 

The best  method of using air  cooling to produce cold has been establ ished by discuss ing the p rocesses  
occur r ing  when unsaturated air  flows around a plate wetted on one side. Analysis  has been made of the t e m -  
pera ture  distr ibutions on the dry  and wet sides.  The l imiting t empera tu re  drop on the dry side has been ca l -  
culated and measured ,  and this is equal to the dew point. However,  the air  tends to reach the wet side while 
still having some capacity to take up water  vapor ,  and this can be utilized fully if the air  flow is proper ly  con-  
trolled.  Maintenance of the heat balance requ i res  recycl ing  of some par t  of the cooled a i r ,  while the rat io of 
the main flow rate to the total flow rate may be represen ted  as the specific flow rate of the main flow" M. 

An apparatus that cools unsaturated air  to the dew point with full use of the psychomet r ic  t empera ture  
difference is called ideal; thermodynamic  analysis  of the ideal model shows that the maximum effect can be 
obtained by the evaporat ion of water  at very  low cost  and by means of revers ib le  p rocesses .  

The specific flow rate  in the main flow is determined in an ideal model only by the pa rame te r s  of the out- 
side a i r ,  and this indicates the scope for  using a i r  for  cooling by means of water  evaporation. A M i d - t  plot 
enables one to determine the optimum balance between the two flows in relat ion to the cl imatic  conditions. 

A method has also been given for  evaluating the thermodynamic  per formance  of an indi rec t -evaporat ion 
sys t em,  par t icu lar ly  as regards  the energy of the cold produced by an actual equipment in relat ion to that of 
the ideal model.  

The degree of thermodynamic  perfect ion in a rea l  apparatus is the product of the degree of use of the air  
and the efficiency of the apparatus 77 = )~E~. 

A relat ionship has been derived between the pe r fo rmance  factor  and the energy change in the flow, 

Ep '= ~/e2 - ei) /(ep -- et)+ 

The ideal model has also been used in the RKV indi rec t - regenera t ive  cooler;  tes ts  on this have shown that 
it is possible to cool the air  below the initial wet-bulb t empera tu re ,  and the degree of thermodynamic  pe r fec -  
tion of the apparatus is 2.5 t imes that of exist ing indi rec t -evapora t ion  coolers .  

t is the 
G is the 
M = G0/G f is the 

is the 
E is the 

= Ma/M id - is the 
Ep is the 
e is the 

N O T A T I O N  

tempera tu re ,  ~ 
a i r  flow ra te ,  kg/sec;  
specific flow rate in main a i r  flow; 
degree of thermodynamic  perfect ion;  
energy of heat flux, kW; 
degree of use of a i r ;  
pe r fo rmance  factor ;  
specific energy of substance J/kg. 

I n d i c e s  

1 
2 
d 
id 
a 

w 

are  the initial pa rame te r s ;  
a re  the pa rame te r s  at outlet f rom dry cavity; 
is the dew point; 
is the ideal model;  
is the actual cooler ;  
is the water .  

Dep. 3324-77, July 11, 1977. 
Original ar t ic le  submitted July 1, 1976. 
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S O L U T I O N  O F  C E R T A I N  T H R E E - D I M E N S I O N A L  

H E A T - C O N D U C T I O N  P R O B L E M S  IN B O D I E S  

O F  C O M P L E X  S H A P E  

O.  V.  D i k h t i e v s k i i ,  N .  V.  P a v l y u k e v i c h ,  
a n d  V.  B.  R y v k i n  

UDC 536.24 

We p r e s e n t  a method for  reducing a t h r ee -d imens iona l  s t eady - s t a t e  beat -conduct ion p rob lem in cyl in-  
d r i ca l  bodies with longitudinal cooling channels to a s e r i e s  of two-d imens iona l  p rob l ems .  I t  is a s sumed  that  
the in ternal  heat  source  as well  as the speci f ied  boundary conditions of the second kind can be r e p r e s e n t e d  
by finite expansions  in the longitudinal coordinate ,  o r  a re  well  approx imated  by exp re s s ions  of the f o r m  F(x, 
y ,  z) = ~Fi (x ,  y)~i(z). We seek  the t e m p e r a t u r e s  of the body and the gas coolant in the f o r m  of s im i l a r  expan-  
sions one degree  h igher  than the expansion of the in terna l  heat  source .  The t h e r m a l  conductivity is a s sumed  
constant .  

Under these  a s sumpt ions  a t h r ee -d i m ens iona l  p rob l em is reduced to n + 2 two-d imens iona l  p rob l ems  
(where n is the o r d e r  of the expansion of the in terna l  heat  source)  of the f o r m  

- -  ~x,yth (x, y, Zo) = ~h (x,. y, Zo) q- (~+2)(~-~- 1) tk+2 (x, y, z0), 

dot ] , i = l ,  2, . . . ,  N, 
-~-  = ath (x, y, :o) s~ 

dth 
- -  8t (ciu - -  th) I i = N + 1 . . . . .  M, dv .s I ' 

S (th - -  cih) ds 

S t 
, i = N q - I  . . . . .  M ,  ct, k+ l = ai (k + 1) c~qt 

k = 0 ,  1, . . . ,  n - aL l .  

Here  Ax,y is the Laplac ian  o p e r a t o r ,  v is the outward n o r m a l ,  Qi is the flow ra te  of the coolant in the i - th  
channel ,  ~i is the h e a t - t r a n s f e r  coeff icient ,  Cp Is the spec i f ic  heat  of the coolant,  and the Cik a r e  expansion 
coeff ic ients .  

These  p r o b l e m s  can be solved in sequence f r o m  k = n + 1 to k = 0, s ince they a re  coupled through the 
boundary conditions. 

I t  is p roposed  to solve the two-dimens iona l  p rob l ems  for  c i r cu la r  cooling channels by the var ia t iona l  
method using a se t  of appropr ia t e  coordinate  funct ions,  including the logar i thms  of the local  channel radi i ,  
which p e r m i t s  a good approximat ion of the t e m p e r a t u r e  dis t r ibut ion in the region considered.  A numer ica l  
solution of a model  two-d imens iona l  p rob lem obtained by the proposed  method is compared  with solutions of 
the s ame  p rob l em obtained by other  methods.  

Dep. 3023-77, June 7, 1977. 
Original  a r t i c l e  submit ted  F e b r u a r y  23, 1976. 

T E M P E R A T U R E  D I S T R I B U T I O N  IN H O L L O W  B O D I E S  

F O R  G E N E R A L  B O U N D A R Y  C O N D I T I O N S  

A.  G.  G o r e l i k  UDC 536.21 

We cons ider  the p rob l em  of calculat ing the t e m p e r a t u r e  dis tr ibut ion in a pla te ,  a hollow cyl inder ,  and a 
hollow sphere  with in ternal  hea t  sources  for  genera l  boundary conditions of the third kind with var iab le  heat  
f luxes a c r o s s  the boundar ies  and vary ing  coolant t e m p e r a t u r e s :  
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Ot Ozt k -- 1 Ot R ~ r. 
OF0 =~r ~ "~ r Or q--g-- Q(r, Fo), - ~ - ~ r ~ l ,  Fo>0, 

Ot (-~-'Or Fo) qo (Fo) R~, + Bio [r (Fo)--t (--~--, Fo)], 

~l (1, Fo) ql (Fo) R -- - -  + Bil [*t (Fo) --  t (1, Fo)], 
Or ~. 

t (r, O) : q) (r) 

( i)  

(2) 

(3) 

(4) 

(k= 1, 2, 3 for a plate,  cyl inder,  and sphere ,  respectively) .  

The problem is solved by using integral  t r ans fo rms  with the following kernels :  

Vo(W)=Biosin [~ (r---~-)]+~cos[~ (r----~-)] plate (5) 

V.(~r)=[Bioro(p~--~-) + ~r I (l~--~-)] Jo(~r)--[BioJo (I x -~--)+ 9J~ (~ "~-)] Yo(W) cylinder (6) 

( . -  + ( io + R ) s i n  [t~ ( r - -  - -~--)]} /p,  sphere 
re (7) 

Here ~ stands for the roots of the charac te r i s t ic  equations 

(8) 

-- [Bio Yo (ll -~--)-1-llY, (li --~--)] [Bi, 1o (l l)-  FJ, (ti)| =0  cylinder (9) 

R sin - -  it R 1 cos [~ 0 [(Bit--l)(Bio+ r-~-) tL~] [IL(I R) ]  § (B!t+ Bio + r-:---- ) (I--R) ] : sphere. (lO) 

After taking the inverse t r ans fo rm the solution for a hollow sphere can be writ ten in the form 

I �9 R t (~ Fo) = 4 q> (r) Vo (~.,) ~ +  T • 

Fo Fo 
vo (~) (~o) dO + - - 7 - . ,  % (o) exp (~0) dO + X - - - -  y ql (0) exp Bioro f 

Fn o o 
Fo Fo 

, ro BiiV.(Fn) f *l (0) exp(F2n0) d0-p- T ~, ! qo (0) exp (It2n0) dO -I- lln Ii 

Fo I 
+ ~ t J" "Q ('' o) Vo (~,,) ~p (~o) a,ao ~xp ( -  ~X Fo). 

where 

( i l l  

+m) 
Similar solutions are obtained for a plate and a hollow cylinder. A whole ser ies  of par t icular  solutions 

can be obtained f rom these expressions for no fluxes or  steady fluxes,  solid bodies, etc. for bodies of c lass i -  
cal shape. 

Dep. 3022-77, June 6, 1977. 
Original ar t ic le  submitted April  14, 1975. 
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S O L U T I O N  O F  A N O N L I N E A R  

E Q U A T I O N  A R I S I N G  IN 

H E A T - T R A N S F E R  T H E O R Y  

S. I .  P r o k o p e t s  a n d  L .  

DIFFERENTIAL 

S. N y u k a l o v a  UDC 532.51 

Many problems of the heat-transfer in an incompressible liquid in which an exponential temperature de- 
pendence of the viscosity is assumed and mechanical-energy dissipation is taken into account reduce to the 
same nonlinear (more precisely, quasilinear) differential equation 

l f +  ~ y'+ey =0. (1) 

This equation is also encountered in astrophysics and chemical kinetics. 

In the special case of one-dimensional Poiseuille flow in a plane channel with the channel wails at the 
same temperature, physical considerations show that the temperature (and velocity) profile is symmetric 
about the middle of the channel, and the maximum velocity and temperature correspond to the channel axis. 
Therefore, it is natural to attempt to find a solution of Eq. (I) that is positive, symmetric, and finite on the 
channel axis. The solution of the Cauchy problem 

y '  (0) = 0, y (0) = l (2) 

for  Eq. (1) has the des i red  proper t ies .  

The solution of this problem will be sought in the fo rm 

y(x)=1+~ akx k. (3) 

Substituting Eq.(3) into Eq.(1) gives, after using Eq. (2), the following recurrence formula for the calculation 
of the coefficients 

---e 
a ok%l =0 (k----0, I, 2, 3 .... ), a0=y(0)=l, as= 3 ' 

k--2 

a ~  = - -  a 2 k _  2 + ~ a. .na2k_2n_. ~ + . . .  + ~ + - -  ~,< 
n=! (k - -  I)} (k - -  2)! (4) 

2 ~-.-n k--2 - -n-- i  

n = l  i=1 r = l  

Hence, the.solution of Eq. (1) is the se r i e s  

e x~ ~ (5) 
y (x) = I - -  T + a'~x~' 

4=2 

where the coefficients a2k are  calculated f rom Eq. (4). 

Using the method of [1], it is simple to demonst ra te  the convergence of the ser ies  obtained and to ca l -  
culate the radius of convergence.  For  x = 1/2 the following majorant  ser ies  is obtained: 

i +-~.  + (2k)~ (6) 

Repeating the computations of [1] a lmost  without modification, it may be shown that the radius of convergence 
is not leas  than 1/2 in any case and that the se r ies  in Eq. (5) converges uniformly,  is posit ive,  and is continuous 
in the region considered,  as are  its derivat ives.  While the convergence of the solution is ensured for a finite 
interval ,  the solution obtained may be used over  a fair ly broad range of the thermodynamic  pa rame te r s  of the 
problem. The uniqueness of the solution is shown analogously. 
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Note  f i na l l y  tha t  t h i s  m e t h o d  m a y  a l s o  be u s e d  to c o n s t r u c t  the  s o l u t i o n  of the  b o u n d a r y  p r o b l e m  for  

Eq.  (1). 

1. 

LITERATURE CITED 

V. V. Kharitonov and O. S. Sorokin, Some Nonlinear Problems of Heat Conduction [in Russian], Nauka 

i Tekhnika, Minsk (1974). 

Dep. 3019-77 ,  June  13, 1977. 
O r i g i n a l  a r t i c l e  s u b m i t t e d  J u l y  9, 1976. 

CLASS OF APPROXIMATE ANALYTIC SOLUTIONS 

OF NONLINEAR HEAT-CONDUCTION EQUATION 

O .  N .  S h a b l o v s k i i  UDC 536.24.02 

F o r  the  h e a t - c o n d u c t i o n  e q u a t i o n  in a p l a n e  t w o - d i m e n s i o n a l  r e g i o n  the f i r s t  b o u n d a r y  p r o b l e m  of  [1] i s  

c o n s i d e r e d  

[ 0 1+0 [ or o ~,(T) ~, (T) 
c(T) at - ax ax ] @ ' 

x~ < x < xv v~ (x) < v ~< y~ (x), 0 < t ~< to. (1) 

k 
c ( T ) - -  b + T  ' ~ ( T ) = I ( b +  T) u, 1 + : ~ 0 ,  

I 

b + r (x, V, t)ix=x i = L t+~ J , z = V + :  in (t + 13), ~ > O, (2) 

1 

[ .  ix, ~)"i " + "  
b + T (x, y, t)ly=y i (,) = L T ~ - - J  ' ~i = v~ (x) + ~ In (t + fi), (3) 

1 

o +  r(~:,  v, 0 b = o  = , Z o = V + ~ l . l ~ ,  i =  l,  2. ( 4 )  

H e r e  T i s  the  t e m p e r a t u r e ;  c i s  the s p e c i f i c  h e a t ;  ~ i s  the t h e r m a l  c onduc t i v i t y  of the m e d i u m ;  t i s  the t i m e ;  
x ,  y a r e  C a r t e s i a n  c o o r d i n a t e s ;  ~,  fl, x ,  b ,  k ,  and  1 a r e  c o n s t a n t s .  

Wi th in  the  f r a m e w o r k  of the  s p e c i f i e d  c l a s s  of s o l u t i o n s  the  t e m p e r a t u r e  a t  x = x i m a y  be de f ined  a p r i o r i  
in the  f o r m  in Eq.  (2); the  t e m p e r a t u r e  f i e l d  a t  the  i n i t i a l  m o m e n t  and a t  the  b o u n d a r i e s  y = Yi(X) i s  de f i ned  
a r b i t r a r i l y  by four  func t ions  of a s ing le  a r g u m e n t .  

The  i n v e s t i g a t i o n  of  the  i n i t i a l  p r o b l e m  r e d u c e s  a p p r o x i m a t e l y  to the  c o n s t r u c t i o n  of a s o l u t i o n  of  the  
t w o - d i m e n s i o n a l  P o i s s o n  equa t ion  

1 

x - o  x r  k = o, b + r (~. y, 0 = [ �9 (~, ~) ] ~+~ 
Ox z + OZ" ~ l [ I + ~ J 

r  z)!x=x i = r  o ( x ,  z ) [ z=z i (x )=  ~ (x), i =  l, 2, l + z  ~ 0, (5 )  

x~ ~< x < x~. [~1, T~I_~ [zl, zd. 

The  func t ions  ei(x}, z i (x) ,  i = 1, 2 ,  in th i s  c a s e  a r e  a r b i t r a r y ,  and t h e i r  cho ice  d e t e r m i n e s  the  f o r m  of the  
func t ions  r  z0), ~(x, r i )  in Eqs.(3)  and (4); the  func t ions  $i(z) a p p e a r  in Eq.  (2) and  a r e  g iven .  I t  i s  a s s u m e d  
tha t  a l l  the func t ions  a r e  d i f f e r e n t i a b l e  a s u f f i c i e n t  n u m b e r  of  t i m e s .  

The  m e t h o d  of  [2] i s  u s e d  to s o l v e  Eq. (5). The  cho ice  of the c o n s t a n t  a fo r  the  g iven  i n t e r v a l  z E [ r l ,  rg] 
i s  such  tha t  l  0zl << 1, the  n e c e s s a r y  cond i t ion  fo r  the  t r a n s i t i o n  f r o m  Eq. (1) to Eq.  (5). 
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1. A . V .  
2. G . A .  

L I T E R A T U R E  C I T E D  

Lykov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967). 
Grinberg, Prikl .  Mekh. Mat,, 31, No. 2 (1967), 

Dep. 3020-77, June 28, 1977. 
Original art icle submitted March 22, 1977. 

T E M P E R A T U R E  F I E L D S  IN C Y L I N D R I C A L  B O D I E S  

W I T H  T H E R M A L  C O N T A C T S  AT T H E  S U R F A C E  

Yu.  I .  M a l o v  and  L.  K. M a r t i n s o n  UDC 536.24 

In calculating the thermal conditions of elements of complex structure, it is necessary to take into 
account the presence of large numbers of thermal contacts at the surface of each element, through which heat 
transfer between them occurs. An effective method is proposed for the solution of contact problems of steady 
heat conduction; in the method, the corresponding boundary problems are reduced to infinite algebraic systems 
for which approximate methods of solution have been developed. 

1. The first step is to obtain the temperature distribution in a cylindrical shell with an annular sector 
as its cross section. On the side wall of the shell there is an arbitrary number of thermal contacts separated 
by thermally insulated intervals. Through the thermal contacts, which have different heat-transfer coeffi- 
cients, heat transfer occurs between the shell and external bodies at various temperatures. The temperature 
field in the shell is determined by solving the boundary problem for the Laplace equation with boundary condi- 
tions of the second kind on the thermally insulated sections of shell surface and boundary conditions of the 
third kind on the sections of surface bounding the thermal contacts. 

2. The temperature distribution in a cylinder of rectangular cross section with symmetrically positioned 
pairs of thermal contacts on the side wall of the cylinder is now obtained for the case when there is a linear 
heat source on the cylinder axis. The temperature field in the cylinder is found by solving the mixed boundary 
problem for the Poisson equation with boundary conditions of the second kind on the thermally insulated sec- 
tions and boundary conditions of the third kind on the sections bounding the thermal contacts. 

3. The temperature distribution in a rod of rectangular cross section is found in the case when a longi- 
tudinal heat flux is created by a temperature difference between the ends of the rod, and heat is removed 
through a discrete system of cooling ribs positioned on two parallel side walls of the rod. The two other side 
walls are thermally insulated. The determination of the temperature field in the rod reduces to the solution 
of a mixed boundary problem for the Laplace equation with boundary conditions of the first kind at the end walls 
and boundary conditions of the second and third kind on the side walls. The results are shown in Fig. i in the 
form of isotherms in the central longitudinal cross section with an asymmetric distribution of thermal contacts 
(cooling ribs) with the same heat-transfer coefficient. For clarity, the thermal contacts are omitted from 

Fig. 1. 

(/ ! /[ ] t l',2)r I f,.oT I k ll 
l. <7 tyXXk,/I/;J Ikk\tTotll 

Fig. l ,  The rma l  f ie ld  in longi tudinal  cross section 
of rod. 
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4. To solve contact  hea t -conduct ion  p r o b l e m s ,  the se t  of conditions of the second and thi rd  kind sp ec i -  
fied on individual sec t ions  of the boundary region is r e p r e s e n t e d  in the f o r m  of a genera l ized  boundary condi-  
tion for  the t e m p e r a t u r e  u 

Ou 
0--~ + 0 (s) u = T (s), s r r, (1) 

where  0(s) and T(s) a r e  p i ecewi se -cons t an t  functions equal  to ze ro  on the the rma l ly  insulated sect ions  of the 
boundary r and to some  constant  value depending on the h e a t - t r a n s f e r  coefficient  on the sect ions bounding the 
t h e r m a l  contacts .  The solution of the boundary p r o b l e m s  of s teady heat  conduction with the boundary condi-  
tion in Eq.(1) is wr i t t en  in the f o r m  of s e r i e s  expans ions  with r e s p e c t  to complete  orthogonal  s y s t e m s  of func-  
t ions that  a re  pa r t i cu l a r  solutions of the d i f fe rent ia l  equations.  The coeff icients  of these  e x p r e s s i o n s  a r e  de -  
t e rmined  f r o m  infinite s y s t e m s  of l inear  a lgeb ra i c  equations.  E s t i m a t e s  show that  the m a t r i x  o p e r a t o r s  of the 
infinite s y s t e m  a re  F redho lm,  and the re fo re  these  s y s t e m s  may  be solved by the reduct ion method. 

Dep. 3159-77, July 7, 1977. 
Original  a r t i c l e  submi t ted  Apr i l  1, 1977. 

H E A T I N G  O F  S T E E L  C Y L I N D E R  IN L I Q U I D  C A S T  

I R O N ,  T A K I N G  I N T O  A C C O U N T  T H E  

T E M P E R A T U R E  F I E L D  IN A D E V E L O P I N G  

S U R F A C E  L A Y E R  

S. A .  K r u p e n n i k o v  a n d  Y u .  P .  F i l i m o n o v  UDC 536.242 

The heat ing of an infinitely long s tee l  cyl inder  i m m e r s e d  in mol ten  ca s t  i ron is considered,  A l aye r  of 
solid cas t  i ron f o r m s  on the cyl inder  su r face ;  as the cyl inder  is heated  the r a t e  of growth of this l aye r  de -  
c r e a s e s  to ze ro ,  and the l aye r  then begins to mel t .  To obtain a numer i ca l  solution for  the matching  of the 
t e m p e r a t u r e  f ields inside the cyl inder  and in the l aye r  of solid cas t  i ron involves ve ry  cons iderable  machine 
t ime ,  and so it  is de s i r ab l e  to s impl i fy  the model  to an extent ,  so as to p e r m i t  engineer ing  calculat ions on 
smal l  compute r s .  

A poss ib le  s impl i f ica t ion  of the p r o b l e m  is to a s s u m e  quas i s teady  t e m p e r a t u r e  var ia t ion  in the solid 
l ayer .  In this case  the s y s t e m  of equations takes  the f o r m  

OT, Z 0 ( or, / 
O < x < R ,  -~--x = a l - - x  --Ox x - ~ - x ] '  

f=O, TI=To, y=O, 

x = R ,  ~.~ T =~.2 . . . . .  

q = -~- c~o 2 L(Tm - -  TIR ) 
- d  - y 2R , -~T-j 

Comparison of the solution of this system on a Nairi-2 computer with the results obtained by solving the prob- 
l em r igo rous ly  show that  the s imple  model  may  be used  for  p rac t i ca l  calculat ions without s ignif icant  loss  of 
a ccura cy. 

N O T A T I O N  

R is the cylinder radius; 
y(t) is the thickness of solid layer; 
a is the thermal resistivity; 

i s  the t h e r m a l  conductivity;  
p is the density; 
c is the spec i f ic  heat ;  
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a is  the hea t - t r ans f e r  coefficient;  
T is the t empera tu re ;  
T l is the t empera tu re  of molten liquid; 
T m is the melt ing point of cas t  iron; 
Q is the latent heat  of fusion of cas t  iron. 

I n d i c e s  

1 is the cyl inder;  
2 is the layer  of solid cast  iron. 

Dep. 3158-77, July 4, 1977. 
Original ar t ic le  submitted July 16, 1976. 

T R A J E C T O R Y  OF Z E R O  I S O T H E R M  

S I N G L E - P H A S E  S T E F A N  P R O B L E M  

IN D E G E N E R A T E  

A. M. T s y b i n  UDC 536.2.01 

The degenerate  s ingle-phase Stefan problem for  a semiplane has a se l f -consis tent  solution orfly in one 
case:  when the t empera tu re  at the surface ~(T) = T 1 = const  < 0. If ~(r) ~ const,  the t ra jec tory  of the single 
i so therm ~(T) may be de termined using a nonlinear integral  equation obtained by Grinberg and Checlanareva.  
For  a boundary condition of the f i r s t  kind at the sur face ,  the appropriate  form of this equation for the present  
problem is 

where  

~ch (If~E (z)) (--,,p~) dz Z ~ (an) exp = ~ - ; - -  ; ~ .  (1) 

(ap) = ~ ( T )  exp ( - -  apT) dz, ReF > O, 

o 

a is the thermal  diffusivity, andB i s the  rat io ofthe phase-Crarmttion ertthalpy to the heat conduct ionof the  sol id-  
zone mater ia l .  

One of the possible a lgor i thms for the solution of this equation is constructed.  Essent ial ly ,  it is as fol-  
lows: Assuming that ~2(T) is an analytic function of the time T and using the representa t ion 

~ ( z ) = 2 n  = ~ z m+~ (n-= I. 2 . . . . .  ), (2) 

and the degeneracy condition ((0) = 0, the following express ion may be obtained 
,-n-~k-- 1 a( I } 

u m + ~  = m -  i + k I,  ~ ,  " ( 3 )  
i=k--I 

Then se r ies  expansion of cosh ( pv~-~(T)),leads, after  using Eq. (2), to the resul t  

s ~ o~,2,§ (i-k-t~, ~ , .~=, , _ , + , ,  , ,  = -p~tao) (4) 
a t - k ( 2 i  - -  I)Z 'J- - -~-  ai a '+1  [ 2 ( i  - - k ) - 1 -  I]! B - -  

If ~0(~) increases  in absolute value as T2Ts, where s = 1, 2 , . . .  , and T 2 < 0, equating t e rms  in the same 
power of p leads to r ecu r rence  relat ions for ~a~)} (m : 1, 2 . . . .  ). 

This algori thm was tested in the seLf-consistent case (s = 0). For  n = 1, as would be expected, Eq. (2) 
then contains only one t e rm ,  which conforms to a known transcendental  equation. 

The recur rence  relat ions have been real ized on a computer .  
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N u m e r i c a l  r e su l t s  a re  given for  the n o n - s e l f - c o n s i s t e n t  p rob lem.  

Dep. 3326-77, July 18, 1977. 
Original  a r t i c l e  submi t ted  F e b r u a r y  4, 1976. 

O P T I M A L  P A R A M E T E R S  O F  AN E X T E N D E D  

S P I R A L  T U R B U L I Z E R  

G. I .  T a r a s o v  a n d  A .  A.  K h a l a t o v  UDC 532.551 

Heat  t r a n s f e r  may  be a c c e l e r a t e d  in a heavi ly  loaded heat  exchanger  by means  of a sp i ra l  tu rbu l i ze r  lying 
within a cyl indr ica l  pipe,  and r e s e a r c h  on sp i r a l  flows of this type has  shown [1] that  there  should be an opt i -  
m a l  solution for  the design of such sp i r a l  t u r b u l i z e r s ,  which should provide  the m a x i m u m  ra te  of hea t  t r a n s f e r .  
Theore t i ca l  s tudies have been made of the flow sp i ra l ing  in a cyl indr ica l  channel having a rad ia l  gap with v a r i -  
ous types of sp i ra l  tu rbu l i ze r ;  the working p a r a m e t e r  may be taken as the ra t io  of the angular  momen tu m of 
the flow to the axial  m o m e n t u m  mul t ip l ied  by the radius  of the pipe. Opt imal  angles have been calcula ted for  
the sp i r a l ,  and opt imal  pitch and number  of s t a r t s ,  as  well  as op t imal  radi i  for  the cent ra l  body and other  
p a r a m e t e r s ,  in each case  in o rde r  to m a x i m i z e  the angular  momen tum.  

Ind i rec t  expe r imen ta l  conf i rmat ion  has  been obtained for  the theore t i ca l  re la t ionsh ips ;  the extent  of t u r -  
bulizat ion is p ropor t iona l  to the h e a t - t r a n s f e r  r a t e ,  so one expec ts  and finds turn ing-poin t  behavior  of the hea t  
t r a n s f e r .  M e a s u r e m e n t s  have been made on 18 long sp i r a l  dev ices ,  and an expe r imen ta l  bas i s  has  been de -  
fined for  calculat ing the m a x i m u m  h e a t - t r a n s f e r  coefficient .  T h e r e  is s a t i s f ac to ry  a g r e e m e n t  between the 
theore t i ca l  and expe r imen ta l  r e s u l t s  for  the opt imal  sp i r a l  angle.  The bes t  va lues  for  the angle a r e  r e l a t ed  
to the f o r m  of the curve  on account  of the in te rac t ion  with the flow, pa r t i cu l a r ly  if the tube has  r ibs  pa ra l l e l  
o r  pe rpend icu la r  to the axis of the sp i ra l .  

The r e su l t s  can be used in designing and calculat ing shor t  cyl indr ica l  pipes containing such tu rbu l i ze r s  
with r ec t angu la r ,  t r apezo ida l ,  or  s e m i c i r c u l a r  g rooves  (Fig. 1), and a lso  sp i ra l  devices  placed in cyl indr ica l  
pipes with only smal l  gaps.  

! ~ Z 3 4 < 

Fig. 1. Types  of extended sp i r a l  t u rbu l i ze r s :  1) cyl indr ica l  channel; 
2) sp i r a l  with t r apezo ida l  groove;  3) s imple  wound sp i ra l ;  4) sp i ra l  
with s e m i c i r c u l a r  groove.  

R 
r 2 and r !  
c 
d 

N O T A T I O N  

is the rad ius  of cyl indr ica l  pipe; 
a re  the radi i  of sp i ra l  and cen t ra l  body, r e spec t ive ly ;  
is the width of c r e s t  of sp i ra l ;  
is the d i a m e t e r  of wound device;  
is the winding angle; 
is the angle of t rapezo ida l  groove.  

L I T E R A T U R E  C I T E D  

1. V . K .  Shchukin, A. A. Khalatov,  and V. G. Letyagin ,  Teplof iz ika Vysokikh T e m p e r a t u r ,  13, No.3 (1975). 

Dep. 3021-77, June 13, 1977. 
Original  a r t i c l e  submit ted  F e b r u a r y  11, 1977. 

381 



AN O P T I M A L  N U C L E A R - R E A C T O R  C O N T R O L  A L G O R I T H M  

I .  A .  K u z n e t s o v  UDC 621.039.56 

The control  a lgor i thm for  a nuclear  r eac to r  involves the exit t empera tu re  and hence the r eac to r  power,  
par t icu lar ly  with a view to minimizing the the rmal  s t r e s s  in the components during runup over  a given period 
and over  a given t empera tu re  range,  or  else to provide a minimum t ime to change the power subject to r e -  
s t r ic t ions  on the s t r e s se s .  

The following are  the tangential s t r e s s e s  at the surface  of a component in a hea t - t r ans fe r  agent of t e m -  
pe ra tu re  0 (v) : 

j~ ~ (~ -- ~') tiT'. 
dO W) 

o = A d~' (1) 
0 

The kernel  of the convolution $(v) is the difference between the mean tempera tu re  of the component and the 
t empera tu re  at the surface af ter  unit negat ive-going tempera tu re  discontinuity; $(r) > 0 for  any T. 

We assume that we have produced a monotonic var ia t ion in the hea t - t r ans f e r  agent t empera ture  ~,ff) 
such that the maximal  the rmal  s t r e s s  in the mos t  important  component is kept constant at the permiss ib le  
value a0; this then defines the maximum tempera tu re  change in a given t ime or  the minimum time for a given 
change in tempera ture .  In fact ,  for  any 0(T) we have f rom (1) that 

] at' I 0J I tiT' [ 0 (~ -- T') dV. (2) 

and for  $(r) > 0 it follows f rom any r that 

[0, I >-I01. (3) 

This conclusion can be formulated in a different way: Given tempera tu re  changes and given t imes can be used 
to produce the min imum thermal  s t r e ss  during the t rans ient  response if these s t r e s se s  are  kept constant. 

The quas is ta t ionary  approximation gives the optimum law followed by the coolant t empera ture  as 

- -  3a---L (l + q),). (4) O. (T) ~ -- A~ 

This express ion  has been wri t ten for planar components ,  and it implies that the minimum thermal  s t r e ss  
attainable in the optimal t rans ient  response  for  a given range A0 or  AT is 

A~aO (5) 
(~mm - -  3 (I -~- (pAT) 

The algori thm for  the tempera ture  variat ion to rea l ize  the minimum s t r e s s  has also been derived for a more  
accura te  express ion.  Allowance is made not only for the thermal  s t r e s s e s  due to the uneven tempera ture  d i s -  
tr ibution over  the c ross  section but also for  those due to deformation of a component as a whole, including the 
displacement  of large  volumes during expansion. These s t r e s se s  a r i se  during startup and shutdown. 

N O T A T I O N  

v is the dimensionless  t ime (Four ier  number);  
Bi is the Blot number;  
A is the coefficient of proport ional i ty  between the t empera tu re  difference and the s t r e s se s  in the e las t ic  

range;  
r = 3 B i / ( 3  + B i ) .  

Dep. 3323-77, July 19, 1977. 
Original ar t ic le  submitted December  14, 1976. 
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HISTORY OF PULSE METHOD OF THERMOPHYSICAL 

PARAMETER DETERMINATION 

A. G. K h a r l a m o v ,  V. N. Y u k o v i c h ,  
a n d  V. I.  K r a s n o v  

UDC 536.2.08 

The publications on pulse methods have been examined, part icularly as applied to the determination of 
thermophysical parameters  such as the thermal diffusivity, specific heat, and thermal conductivity. 

The historical development of the method is examined in terms of the numbers of papers appearing in 
periodicals;  this provides an economical way of determining the development scope of thermophysical methods, 
as well as future prospects for application. 

The papers appearing between 1961 and 1974 inclusive have been examined, and the number published 
each year  is constantly increasing which indicates extension of the use of the method. The distribution of the 
papers by journals indicates that the method is widely used in various branches of applied physics. The num- 
bers of publications by groups indicate the major applications. 

The total volume of papers has been compared with exponential and logit curves; at present,  the behavior 
is close to exponential (Fig. 1). Various additional features indicate that this growth tendency should continue 
for some period. It is also clear that the method has now been largely researched and is becoming widely 
used in applications. 

The temperature range covered by the applications is from 100 to 3300~ about 70% of the applications 
relate to the range from room temperature up to 1800~ The range of measured thermal diffusivities is from 
3" 10 -3 up to 2 cm2/sec, which shows that the technique is applicable to virtually all solids employed in engi- 
neering. 

g 

S Y  T i m e  

5~pub! 

8O 

~o 

~o 

20 

~ 62 6, 6~ ~8 7o 72 z~ Year  

Fig. 1. Diagram of the growth in the num- 
be r  of publications pe r  year .  The con- 
tinuous curve is the growth of the number 
of publications; the dashed line is the 
same minus Soviet publications. 
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Methods are also indicated for systems analysis of the various techniques for determining thermophysi-  
cal parameters  of materials .  The approach is readily formalized and allows one to define the place of any 
part icular  branch of research  in any scientific area where there is an increasing flow of scientific informa- 
tion. 

Dep. 3319-77, July 25, 1977. 
Original art icle submitted January 17, 1977. 
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